65 research outputs found

    SWIPT in Mixed Near- and Far-Field Channels: Joint Beam Scheduling and Power Allocation

    Full text link
    Extremely large-scale array (XL-array) has emerged as a promising technology to enhance the spectrum efficiency and spatial resolution in future wireless networks by exploiting massive number of antennas for generating pencil-like beamforming. This also leads to a fundamental paradigm shift from conventional far-field communications towards the new near-field communications. In contrast to the existing works that mostly considered simultaneous wireless information and power transfer (SWIPT) in the far field, we consider in this paper a new and practical scenario, called mixed near- and far-field SWIPT, where energy harvesting (EH) and information decoding (ID) receivers are located in the near- and far-field regions of the XL-array base station (BS), respectively. Specifically, we formulate an optimization problem to maximize the weighted sum-power harvested at all EH receivers by jointly designing the BS beam scheduling and power allocation, under the constraints on the maximum sum-rate and BS transmit power. First, for the general case with multiple EH and ID receivers, we propose an efficient algorithm to obtain a suboptimal solution by utilizing the binary variable elimination and successive convex approximation methods. To obtain useful insights, we then study the joint design for special cases. In particular, we show that when there are multiple EH receivers and one ID receiver, in most cases, the optimal design is allocating a portion of power to the ID receiver for satisfying the rate constraint, while the remaining power is allocated to one EH receiver with the highest EH capability. This is in sharp contrast to the conventional far-field SWIPT case, for which all powers should be allocated to ID receivers. Numerical results show that our proposed joint design significantly outperforms other benchmark schemes without the optimization of beam scheduling and/or power allocation.Comment: In this paper, we consider a new scenario of mixed-field SWIPT, and studied efficient beam scheduling and power allocation. The paper is accepted to JSAC. arXiv admin note: substantial text overlap with arXiv:2304.0794

    Optimizing Wirelessly Powered Crowd Sensing: Trading energy for data

    Full text link
    To overcome the limited coverage in traditional wireless sensor networks, \emph{mobile crowd sensing} (MCS) has emerged as a new sensing paradigm. To achieve longer battery lives of user devices and incentive human involvement, this paper presents a novel approach that seamlessly integrates MCS with wireless power transfer, called \emph{wirelessly powered crowd sensing} (WPCS), for supporting crowd sensing with energy consumption and offering rewards as incentives. The optimization problem is formulated to simultaneously maximize the data utility and minimize the energy consumption for service operator, by jointly controlling wireless-power allocation at the \emph{access point} (AP) as well as sensing-data size, compression ratio, and sensor-transmission duration at \emph{mobile sensor} (MS). Given the fixed compression ratios, the optimal power allocation policy is shown to have a \emph{threshold}-based structure with respect to a defined \emph{crowd-sensing priority} function for each MS. Given fixed sensing-data utilities, the compression policy achieves the optimal compression ratio. Extensive simulations are also presented to verify the efficiency of the contributed mechanisms.Comment: arXiv admin note: text overlap with arXiv:1711.0206

    Double-Active-IRS Aided Wireless Communication: Deployment Optimization and Capacity Scaling

    Full text link
    In this letter, we consider a double-active-intelligent reflecting surface (IRS) aided wireless communication system, where two active IRSs are properly deployed to assist the communication from a base station (BS) to multiple users located in a given zone via the double-reflection links. Under the assumption of fixed per-element amplification power for each active-IRS element, we formulate a rate maximization problem subject to practical constraints on the reflection design, elements allocation, and placement of active IRSs. To solve this non-convex problem, we first obtain the optimal active-IRS reflections and BS beamforming, based on which we then jointly optimize the active-IRS elements allocation and placement by using the alternating optimization (AO) method. Moreover, we show that given the fixed per-element amplification power, the received signal-to-noise ratio (SNR) at the user increases asymptotically with the square of the number of reflecting elements; while given the fixed number of reflecting elements, the SNR does not increase with the per-element amplification power when it is asymptotically large. Last, numerical results are presented to validate the effectiveness of the proposed AO-based algorithm and compare the rate performance of the considered double-active-IRS aided wireless system with various benchmark systems
    • …
    corecore